If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+4w-126=0
a = 1; b = 4; c = -126;
Δ = b2-4ac
Δ = 42-4·1·(-126)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{130}}{2*1}=\frac{-4-2\sqrt{130}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{130}}{2*1}=\frac{-4+2\sqrt{130}}{2} $
| 84x=90 | | 2y=-6+2 | | 8x+76=90 | | 8x+72=90 | | 27=3^y | | -3.5x-0.2(x-2.3)=7.86 | | 3x+2x-4=11 | | (x2−2.65x+1.68x)/x=2.44 | | (x2−2.65x+1.68x)/x=0 | | 3w+12+24=180 | | 10x=82 | | 2x+0.7=5.9 | | x+5.5+8=5x+21 | | 2(-3x+2)=-50 | | X/4+x/3=2x-17 | | 4x=7=75 | | V=4x²-140x+1200 | | 8x+2+x=1+5x-11 | | -4(1+6x)=-172 | | -30=-10b+50 | | -4=12+b | | X-9=5x-21 | | 7=-13-v | | -19+n=-9 | | 5+16b²=117 | | y/7-5=-26 | | 3x7+2x3‾‾‾‾‾‾‾‾‾√4x=(3x)2+2 | | p-(-4)=19 | | 2=y/3-8 | | 5=-11-p | | x=32-49 | | 6r+1=4r-9 |